Как выбрать крутой труборез для пластиковых труб: все виды + рейтинг лучших на сегодня

Здравствуйте, уважаемый читатель! Среди монтажников-сантехников труборез для пластиковых труб давно стал обязательным инструментом. За последнее время появилось много его разновидностей. Как выбрать наиболее подходящий, в чем преимущества того или иного агрегата, какова технология резки различных материалов – все это мы рассмотрим в нашей статье.

В каких случаях без трубореза не обойтись

Пластиковые трубы довольно легко поддаются резанию. Для этого можно использовать ножовку, обычный нож с зубчатым лезвием, болгарку. Однако получить с их помощью ровную линию сразу не удастся, его необходимо будет дополнительно обрабатывать. Это лишние трудозатраты, потеря времени.

Между тем технология стыков требует, чтобы срез был обязательно перпендикулярным и чистым. Поэтому, когда фронт монтажных работ большой, для ускорения работ и обеспечения их качества лучше воспользоваться специальным инструментом – труборезом.

Используют труборезы при:

  1. Нарезании пластмассовых отводов для укладки домашних сетей водоснабжения, отопления, теплых полов.
  2. Ремонтных работах, когда необходимо удалить поврежденный участок отвода.
  3. Демонтаже старых или поврежденных трубопроводов.

Принцип работы

Инструменты для резки пластиковых отводов различают по принципу действия.

Ручные устройства действуют по принципу мускульной силы. Их режущее воздействие приводится в действие физической силой оператора. Электрические труборезы работают с помощью электрического привода.

Существуют также резаки, работающие на основании гидравлического или пневматического привода.

Преимущества и недостатки ручных и электротруборезов

Ручной инструмент хорош тем, что им можно работать в различных условиях, не зависеть от наличия электропитания. Такому труборезу поддаются отводы диаметром до 125 мм, он подойдет для небольших объемов работ. Инструмент прост в употреблении, каких-то особых навыков и квалификации не требует, отличается небольшой стоимостью.

Если же трубы приходится резать каждый день, лучше иметь дело с электрическим инструментом. Он экономит силы и время, позволяет справляться с толстыми стенками и большими диаметрами. К его недостаткам относятся высокая цена, привязка к электропитанию.

Классификация и виды: устройство, технические характеристики, технология резки

Сегодня рынок предлагает большой выбор режущих инструментов. Универсального, на все случаи жизни, трубореза не существует. Каждый вид обладает своими особенностями, отличиями в параметрах и сферах применения.

Резцовые

В корпусе трубореза такого типа закреплены стальные резцы – вращающиеся острые диски. Под нажимом специального механизма они обеспечивают разделение материала. Аппарат рассчитан на трубы диаметром до 10 см.

Положение режущих дисков регулируется резьбовым штоком. При их затягивании диски постепенно прорезают стенки отвода. Операция осуществляется вращением трубореза вокруг отвода против часовой стрелки, срез получается чистым и ровным.

Роликовые

На С-образной обойме закреплены направляющие ролики и режущий диск. Размер корпуса и количество роликов определяют максимальное сечение трубы, которую можно разрезать инструментом.

Отвод зажимают в обойме и поворачивают инструмент вокруг трубы, с каждым витком погружая резак глубже в материал. При этом вращающееся лезвие не давит на трубу, а постепенно разрезает ее. В результате линия получается ровной.

Следует иметь в виду, что труборез может работать рывками, из-за чего образуется небольшое количество зазубрин. Такого недостатка лишены модели с телескопической регулировкой, однако стоить они будут дороже.

Роликовые устройства способны разрезать отводы сечением до 12,5 см.

Выпускаются роликовые резаки малых размеров, умещающиеся в ладони или кармане спецодежды.

Цепного типа

Труборез с цепным механизмом хорош тем, что его можно применять на отводах различных диаметров. Он состоит из двух щипцов, на которых крепится режущая цепь. Один ее конец жестко закреплен на ручке аппарата. На другом конце оператор подбирает в зависимости от сечения разрезаемого объекта определенное звено и накидывает его на крюк второй рукоятки.

Отдельные модели оснащены регулировочным винтом, обеспечивающим натяжение цепи.

Режущие элементы в цепи бывают подвижными (могут вращаться во время реза) и неподвижными (жестко закреплены в цепи).

Для манипуляции закрепляют цепь на ручке и вращают инструмент, совершая колебательные движения в обе стороны. Постепенно режущие ножи углубляются в материал. Вращение продолжается до полного отсекания отрезка.

Роторные телескопические

Особенность этих труборезов состоит в наличии одинаковых режущих роликов, которые фиксируются на отводе, разрезая его. В действие он приводится съемной рукояткой, которая одновременно прижимает ролики к разрезаемой поверхности. Телескопический механизм позволяет производить точную и быструю регулировку.

Аппарат справляется со стенками толщиной 19 мм, режет отводы сечением 160 мм. Он приспособлен для работы в сложных условиях, в том числе под водой.

К недостаткам этого типа приборов следует отнести их высокую стоимость.

С храповым механизмом

Такие инструменты называют ножницами. Они популярны у монтажников благодаря простому устройству и низкой стоимости.

Ножницы прекрасно справляются с резкой всех видов пластика. Срез получается ровным, без зазубрин. Но трубу сечением больше 30 мм они берут уже с большим трудом. Такие диаметры режут ножницы ведущих мировых производителей, в частности, компании «Риджит». Однако стоимость их начинается от 10 тысяч рублей.

Отвод помещают в держатель, совмещая лезвие с отметкой. Смыкая ручки ножниц, трубу разделяют на части. Гребенчатая рейка-храповик фиксирует нож, если операцию не удалось провести за один ход. Она не дает лезвию вернуться назад, что облегчает продолжение процесса.

Гильотинные

У этих приборов лезвие равномерно разрезает трубу, опускаясь на нее под высоким давлением. Стальная кромка V-образной формы вдавливается в поверхность пластикового отвода и оставляет прямой и чистый срез без заусенцев.

Равномерное разделение нагрузки позволяет избежать деформации полипропиленовых или других пластиковых труб во время процесса. Такое давление обеспечивается ручным штоком, который приводится в действие вращением рукоятки. Труборезы гильотинного типа справляются с отводами до 100 мм сечением.

Электрические и сабельные

Выпускаются двух видов: разъемные и неразъемные. Корпус первых состоит из двух частей, что дает возможность использовать их на действующих трубопроводах.

Неразъемные быстро крепятся на трубе при помощи самоцентрирующегося зажима. Способны раскраивать трубы самой большой толщины. Существуют модели, которые для работы используют резцы, и модели, раскраивающие трубы с помощью режущих дисков.

Популярны аккумуляторные труборезы.

В работе с электроинструментами задача оператора – закрепить аппарат на отметке. После нажатия кнопки агрегат за считанные секунды раскраивает материал.

Но такие приборы стоят больших денег, приобретать их для монтажа домашней сети отопления или теплого пола не имеет смысла. Они выгодны крупным компаниям, занимающимся монтажными работами с коммуникациями.

Сабельные пилы применяют при резке труб заподлицо со стеной, в труднодоступных местах. Раскрой идет за счет возвратно-поступательных движений полотна. Срез не всегда получается ровным и прямым, его приходится обрабатывать. Такая пила пригодится в хозяйстве на особый случай как дополнение к набору основных инструментов.

Гидравлические

Принцип работы подобных инструментов основан на давлении жидкости. В большинстве своем приборы имеют существенные габариты, оборудованы штоком с поршнем, гидронасосом. Давление в поршне создается нагнетаемой водой. Как правило, для их нормальной работы нужен зазор в 300 мм вокруг трубы и источник электропитания. Выпускаются и мини-станки, которые можно перевозить в багажнике автомобиля.

Аппараты с гидравлическим приводом могут резать трубы даже под водой. Разделение обеспечивается алмазным диском. Крупные станки используются в коммунальном и газовом хозяйствах, в промышленности.

Пневматические

В этих инструментах поршень приводится в действие под давлением воздуха, поступающего из компрессора. Мощности универсальных резных станков достаточно для обрезания отводов сечением 1300 мм. Основная нагрузка приходится на резцы, которые применяются в зависимости от разрезаемого материала.

Мобильные пневмоинструменты имеют разъемный корпус, что позволяет использовать их на функционирующей трубе. В большинстве они приспособлены для нанесения наружной фаски.

Орбитальные

Этот тип инструмента предназначен для круговой резки отводов. Режущий механизм двигается по направляющим вокруг объекта. Приводится в действие от электрического, пневматического или гидравлического привода.

В качестве режущего элемента используются диск или фреза. В любом случае получается ровный рез без заусенцев. Выпускаются модели с разъемным и неразъемным корпусом.

Для раскроя трубная деталь закрепляется на оборудовании с помощью автоматического зажима перпендикулярно режущему диску. Орбитальными труборезами разделяются отводы с сечением 330 мм.

Промышленные профессиональные

Эта категория труборезов предназначена для резки отводов любых типоразмеров, подходит и для ПВХ и других пластиковых каналов.

Приборы оснащены системой автоматического управления. С ее помощью регулируются скорость резания, нажим режущей кромки.

Работают как от электрического, так и от пневматического или гидравлического привода. Для работы на объектах повышенной пожароопасности или при отсутствии электричества используются ручные аппараты повышенной производительности.

На что обратить внимание при выборе

Подбор наиболее подходящей модели определяется следующими факторами:

Для монтажа домашней водопроводной сети или системы отопления будет достаточно ножниц с рейкой-храповиком. Для прокладки внешней и внутренней канализации лучшим выбором будет цепной или роликовый труборез. Когда финансы позволяют, то для укладки полипропиленовых отводов можно приобрести аппарат с функцией снятия фаски.

Механический или электрический

Выбор агрегата из этих категорий во многом определяется финансовыми возможностями покупателя. Электрические приборы намного производительнее, но они и стоят значительно дороже.

Если объем работы ограничивается разовой укладкой домашней сети, нет смысла переплачивать за электрический привод.

Как выбрать лезвие для инструмента

От качества режущего элемента во многом зависит производительность аппарата. Резцы, ролики и лезвия со временем теряют свою остроту. Поэтому важно выбрать надежную рабочую кромку.

Лучший материал для лезвия — нержавеющая сталь. Угол заточки должен быть равен 30°. Следует учитывать материал при выборе размера лезвий. Так, для резки ПВХ труб подбираются ролики с высотой лезвий 3,5, 7, 4,5, 10,5 и 12,5 мм.

Ориентировочная цена

Стоимость ножниц — самых простых ручных приборов массового использования — начинается от 300–400 рублей. Более эффективные роликовые труборезы стоят от 1500–3000 рублей. Цена на профессиональный инструмент стартует с 3,5 тысячи рублей.

Продвинутые модели ведущих производителей оцениваются гораздо дороже, достигая 200–300 тысяч рублей.

Топовые модели на рынке инструментов

Среди производителей режущего инструмента на российском рынке сумели зарекомендовать себя такие компании, как RIDGIT, REED, Stayer, Gerat, Virax, REMS, «Ротенбергер», «Зубр». Проведем краткий обзор их продукции.

Бюджетные модели для домашнего использования

Труборез Stayer для реза полимерных труб диаметром 42 мм. Храповая рейка обеспечивает возможность манипуляции одной рукой. Цена 346 рублей.

Телескопический труборез от немецкого бренда Gerat. Устройство позволяет комфортно работать с деталями разных сечений до 63 мм.

Профессиональное оборудование для резки труб

Телескопический труборез бренда «Ротенбергер» предназначен для резки многослойных отводов диаметром 35–42 мм. Способен работать в узком пространстве. Оснащен встроенным гратоснимателем.

Режущий инструмент для работы одной рукой — RIDGIT PC 1375 ML. Одна из самых удачных моделей известного бренда «Риджит». Прибор разрезает трубы сечением до 42 мм буквально за секунды. Цена 3600 рублей.

Гордость американской фирмы REED — поворотные или роторныe труборезы, применяемые для холодной резки отводов в любых условиях, включая аварийные ситуации.

Ручная гильотина Virax, произведенная для прямой резки ПЭ труб сечением до 225 мм. Стоимость свыше 90 тысяч рублей.

Как правильно резать металлопластиковые трубы

В отличие от работы с полипропиленовыми трубами, при резке металлопластиковых отводов важно соблюдать точность. ПП трубы соединятся сваркой, которая скроет небольшие огрехи. Металлопластиковые детали стыкуются фитингами, и лишний миллиметр здесь может обернуться неплотным соединением и протечкой в дальнейшем.

Поэтому отметку наносят строго поперек отвода. Инструмент устанавливают так, чтобы лезвие четко совпадало с меткой. Станок и отвод должны быть жестко зафиксированы. Если в руках оператора роликовый труборез, лучше сделать пробный оборот аппарата, чтобы проконтролировать точность установки. Только после этого агрегат приводят в действие.

Подготовка и обрезка стальных труб

Перед раскроем поверхность стального отвода промазывают маслом в месте предполагаемого разделения. Это уменьшит температуру в рабочей зоне, очистит внешний периметр и частично снимет окалину.

Размечают линию среза и закрепляют заготовку в корпусе инструмента. Ручкой штока регулируют нажим на режущую кромку и перемещают аппарат по периметру отвода. Усиливая давление, проводят линию. Если лезвия хорошо заточены и имеют необходимую прочность, место разделения получится ровным и не потребует последующей обработки.

Как резать трубы малого диаметра

Трубку зажимают в тисках или иным способом. Делают разметку среза. Надевают труборез на торец отвода и, вращая рукоять инструмента, доводят режущий ролик до его соприкосновения с поверхностью детали.

Проворачивают на один оборот труборез, проверяют правильность и точность риски. Если линия замкнутая, не раздвоенная, ручку поворачивают еще на четверть оборота, прижимая режущую кромку к детали. Далее прокручивают рукоять до тех пор, пока стенки отвода не будут полностью прорезаны.

Нарезка стальных труб крупного диаметра

Подобные операции в бытовых условиях практически не проводятся. Предприятия, имеющие дело с крупными трубами в промышленных масштабах, приобретают для этого мощное и дорогостоящее оборудование.

Например, лазерная резка с использованием специального станка и компьютерного оснащения обеспечит быстрый и качественный раскрой труб огромных сечений.

Если же возникла необходимость разрезать трубу большого диаметра, прибегают к использованию обычной болгарки. Главное — сделать правильную разметку, а затем выполнить аккуратную и точную линию по намеченной метке.

Для регулярных работ такого масштаба лучше все-таки приобрести труборезной станок соответствующей мощности.

Правила эксплуатации и ухода

Как и любой инструмент, труборез будет нормально и долго функционировать, если пользователь соблюдает правила его использования:

  1. Инструмент нельзя перегружать. Он должен работать при той нагрузке, на которую рассчитан.
  2. Заготовку нужно зажимать в труборезе надежно, но без чрезмерной жесткости. Перетяжка грозит искривлением линии.
  3. Следует периодически проверять остроту режущих элементов, в случае надобности сразу их заменять.
  4. Особое внимание уделять контролю над состоянием электрошнуров и вилок трубореза. В случае их повреждения производить ремонт или замену.
  5. Храниться инструмент должен в теплом и сухом месте.

Заключение

Мы рассмотрели основные вопросы применения труборезов. Надеемся, что информация принесла вам практическую пользу. Желаем удачи в строительно-ремонтной деятельности. Подписывайтесь на наши статьи, делитесь свои опытом в соцсетях.

Назначение и области применения транзисторов

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. Транзистор управляет током на выходе пропорционально изменению силы входного тока и величины входного напряжения, причем при незначительном изменении входных параметров при определенных условиях можно добиться существенного усиления выходного сигнала. Поэтому полупроводниковые транзисторы часто применяются в усилительных схемах.

Режимы работы транзисторов различных видов

Области, где используются транзисторы, зависят от технических характеристик последних. Транзисторы разного конструктивного исполнения рассчитаны на работу в ключевом или усилительном режимах.

Применение транзисторов

Транзисторы востребованы практически во всех отраслях народного хозяйства. Минимализация габаритов этих приборов обеспечивает рост быстродействия электронных компонентов при снижении количества потребляемой энергии и выделения тепла.

Производство слуховых аппаратов

Благодаря практическому применению усиливающих свойств полупроводникового транзистора, стало возможным создание для слухового аппарата мощного микрофона с миниатюрными размерами.

Принцип работы слухового аппарата:

Производство компьютеров и калькуляторов

Полупроводниковые транзисторы используются во всех электронных компонентах компьютеров и калькуляторов. Они находятся в составе материнских плат, процессоров, карт расширения, периферийных устройств. Системы обработки, передачи и защиты данных – одни из основных областей, где применяются полупроводниковые транзисторы.

Транзисторы, работающие в ключевом режиме, используются для защиты программ от взлома и предотвращения кражи информации. Управление силой тока – аналоговое, регулирование – с помощью ширины импульса.

Транзисторы Дарлингтона (сборного типа)

Это составной транзистор, состоящий из двух или нескольких биполярных транзисторов, расположенных на одном монокристалле и заключенных в общий корпус. В высоковольтной электронике используются составные гибридные транзисторы IGBT, в состав которых входят биполярные и полевые модели. Основное назначение транзистора сборного типа – получение высокомощного сигнала в электрической цепи. Однако из-за низкого быстродействия они эффективны только в низкочастотной аппаратуре.

Силовые преобразователи инверторного типа

Мощные транзисторы с изолированным затвором применяются в оборудовании, рассчитанном на питание током высокого напряжения. Это индукционные нагреватели, мощные сварочные аппараты, мостовые и полумостовые резонансные преобразователи.

Где применяются транзисторы – видео

В этой статье мы только кратко перечислили области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов. Более того, без этих радиоэлементов были бы невозможны достижения современной микроэлектроники, полеты в космос, создание систем наземного и воздушного наблюдения, связи, радиолокации и многих других.

Была ли статья полезна?

Другие материалы по теме

Комментарии

Оптовая продажа электронных компонентов и радиодеталей с доставкой по всей России

Транзистор: виды, применение и принципы работы

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

Принцип работы прибора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

  1. Электронные.
  2. Дырочные.

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

Что такое транзистор и как он работает?

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.

Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.

Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q», после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.

Рис. 5. Полевые транзисторы Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

VT величина термодинамического напряжения, Nn и Np концентрация соответственно электронов и дырок, а ni обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.

Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: Iк = ß*IБ, где ß коэффициент усиления по току, IБ ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).

Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

Схемы с общим эмиттером обладают:

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

На рисунке 10 показаны различные схемы включения.

Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком



Виды транзисторов и их применение

Слово «транзистор» образованно из двух слов: transfer и resistor. Первое слово переводится с английского как «передача», второе — «сопротивление». Таким образом, транзистор — это особого рода сопротивление, которое регулируется напряжением между базой и эмиттером (током базы) у биполярных транзисторов, и напряжением между затвором и истоком у полевых транзисторов.

Изначально названий для этого полупроводникового прибора предлагалось несколько: полупроводниковый триод, кристаллический триод, лотатрон, но в результате остановились именно на названии «транзистор», предложенном Джоном Пирсом, – американским инженером и писателем-фантастом, другом Уильяма Шокли.

Для начала окунемся немного в историю, затем рассмотрим некоторые виды транзисторов из распространенных сегодня на рынке электронных компонентов.

Уильям Шокли, Уолтер Браттейн и Джон Бардин, работая командой в лабораториях Bell Labs, 16 декабря 1947 года создали первый работоспособный биполярный транзистор, который был продемонстрирован учеными официально и публично 23 декабря того же года. Это был точечный транзистор.

Спустя почти два с половиной года, появился первый германиевый плоскостной транзистор, затем сплавной, электрохимический, диффузионный меза-транзистор, и наконец, в 1958 году Texas Instruments выпустила первый кремниевый транзистор, затем, в 1959 году Жаном Эрни был создан первый планарный кремниевый транзистор, в итоге германий был вытеснен кремнием, а планарная технология заняла почетное место главной технологии производства транзисторов.

Справедливости ради отметим, что в 1956 году Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике «за исследования полупроводников и открытие транзисторного эффекта».

Что касается полевых транзисторов, то первые патентные заявки подавались с середины 20-х годов 20 века, например в Германии физик Юлий Эдгар Лилиенфельд в 1928 году запатентовал принцип работы полевых транзисторов. Однако, непосредственно полевой транзистор был запатентован впервые в 1934 году немецким физиком Оскаром Хайлом.

Работа полевого транзистора в основе своей использует электростатический эффект поля, физически это проще, потому и сама идея полевых транзисторов появилась раньше, чем идея биполярных транзисторов. Изготовлен же первый полевой транзистор был впервые в 1960 году. В итоге, ближе к 90-м годам 20 века, МОП-технология (технология полевых транзисторов «металл-оксид-полупроводник») стала доминировать во многих отраслях, включая IT-сферу.

В большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Как вы уже знаете, по технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3. Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности. Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92, например производства ОАО «Интеграл».

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором. Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET. Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор) в корпусе TO-3P. Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей, благо, документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Виды транзисторов и область их применения. Общие сведения.

Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…

Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи. Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.

Виды транзисторов

О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Полевые и биполярные транзисторы

По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Виды транзисторов, p –n–p и n–p–n проводимость

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3

Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности

Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92.

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором

Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET

Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор)

Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Рекомендации по эксплуатации транзисторов

Значения большинства параметров транзисторов зависят от реального режима работы и температуры, причем с увеличением температуры параметры транзисторов могут меняться. В справочнике приведены, как правило, типовые (усредненные) зависимости параметров транзисторов от тока, напряжения, температуры, частоты и т. п.

Для обеспечения надежной работы транзисторов необходимо принимать меры, исключающие длительные электрические нагрузки, близкие к предельно допустимым. Например заменять транзистор на аналогичный но меньшей мощности не стоит, это касается не только мощностей, но и других параметров транзистора. В некоторых случаях для увеличения мощности транзисторы можно включать параллельно, когда эмиттер соединяется с эмиттером, коллектор с коллектором и база – с базой. Перегрузки могут быть вызваны разными причинами, например от перенапряжения, для защиты от перенапряжения часто применяют быстродействующие диоды.

Что касается нагрева и перегрева транзисторов, температурный режим транзисторов не только оказывает влияние на значение параметров, но и определяет надежность их эксплуатации. Следует стремиться к тому, чтобы транзистор при работе не перегревался, в выходных каскадах усилителей транзисторы обязательно нужно ставить на большие радиаторы. Защиту транзисторов от перегрева нужно обеспечивать не только во время эксплуатации, но и во время пайки. При лужении и пайке следует принимать меры, исключающие перегрев транзистора, транзисторы во время пайки желательно держать пинцетом, для защиты от перегрева.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей. Документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Видео, виды транзисторов

Для чего нужны транзисторы и как они работают

Концепция транзисторов

Что такое концепция? Это общее представление об объекте или процессе. Например, концепция автомобиля – это четыре колеса, руль, корпус, двигатель и коробка передач. Концепция одна, а выпускаются автомобили с разной конструкцией, устройством и предназначением.

У транзисторов, как и у вакуумных триодов, очень простая концепция и принцип работы.

Триод – это та деталь, у которой три контакта.

Давайте представим бак с водой, в центре которого установлена задвижка.

Что мы можем сделать с потоком воды? Мы можем управлять им за счет задвижки.

Например, если в баке течет вода, и задвижки нет в нем, то вода проходит без препятствия.

В тоже время, если мы полностью перекроем путь задвижкой, то и вода не будет поступать во вторую условную часть бака и поток прекратится.

А еще мы можем полностью управлять потоком воды при помощи регулировки задвижки.

Получается, что при помощи небольшой задвижки можно контролировать огромный поток воды.
Небольшие колебания (перемещения) задвижки позволяют с такой же частотой пропускать большой поток воды.

Но в тоже время транзисторы могут быть по разному устроены.

Полевые транзисторы

Описанный выше пример – это полевой транзистор. У самого простого полевого транзистора есть сток, исток и затвор.

Транзисторы изготавливаются из полупроводниковых материалов. Поэтому, у них есть второе название — полупроводниковые триоды.

При помощи полупроводников можно изготовить p-n переход.

Любой транзистор состоит из p-n переходов, которые пропускают электрический ток в одном направлении. И этот переход позволят управлять электрическим током как задвижкой.

Полевые транзисторы управляются при помощи напряжения, которое подается на затвор.

Так выглядит состав полевого транзистора с каналом p – типа.

А вот так с n – типом.

Канал транзистора – это область между истоком и стоком.

Почему транзисторы бывают разными по проводимости? Транзистор с n типом управляется при помощи положительного потенциала, а с p типом наоборот, отрицательным потенциалом. Это позволяет усиливать сигналы с разными потенциалами.

Затворов у полевых транзисторов на самом деле два, но их выводы объединены в один, так как функция у них одинакова. Зачем нужно два затвора? Так транзистором проще управлять.

Подавая напряжение на затвор, мы можем регулировать электрический ток проходящий от истока к стоку.

А самое главное не это. Самое главное, что мы можем таким образом не просто включить или выключить электрический ток по цепи, но и управлять его движением.

Например, можно подать на затвор полевого транзистора переменный сигнал 5 мкВ. И он будет модулировать электрический ток, который проходит через исток и сток транзистора. Так можно получить усиленный сигнал.

Также полевые транзисторы имеют разные схемы включения, которые позволяют согласовывать сопротивления и регулировать усилительные функции.

Обозначение (УГО) полевого транзистора с каналом n типа на принципиальных схемах:

Биполярные транзисторы

Это другой тип транзисторов. Такие транзисторы управляются при помощи электрического тока. И они состоят из чередующихся p-n переходов.

Как и у полевого транзистора, у биполярного тоже три контакта. Это эмиттер, база и коллектор. База всегда по типу противоположна эмиттеру и коллектору.

Эмиттер — это большой источник основных носителей заряда. А коллектор — это самый большой контакт из этой троицы. С коллектора снимается усиленный сигнал в классической схеме, чтобы получить максимальную мощность. В транзисторах большой мощности коллектор припаян напрямую к корпусу, чтобы рассеивать тепло.

Бывают биполярные транзисторы n-p-n типа.

Обозначение (УГО) биполярного n-p-n транзистора на принципиальных схемах:

Отличие биполярных транзисторов от полевых

Полевые транзисторы управляются при помощи электрического поля и благодаря этому они очень энергоэффективны. Именно по этой причине они используются при производстве процессоров.

С другой стороны, у полевых транзисторов есть слабое место. Это их тонкий p-n переход. Он очень чувствителен к статическому электричеству. Кстати, именно из-за статического электричества перестают работать флешки и карты памяти, если вы их вытащили из устройства во время работы.

Схемы защиты от статического электричества не успевают сработать, и статика разрушает полевые транзисторы.

А вот биполярные транзисторы наоборот, лучше переносят статику. Но в тоже время, они потребляют больше мощности, так как для их открытия нужен электрический ток.

Схемы включения

Так как у транзисторов три контакта, то можно чередовать вход и выход. Что это даст? У каждого контакта свои особенности. Например, если мы подадим сигнал на базу и эмиттер биполярного транзистора, а снимать итоговый сигнал будем с эмиттера и коллектора, то такая схема будет называются с общим эмиттером.

Этот тип включения позволяет передать максимум мощности в нагрузку.

Прочитать подробнее про работу схемы с общим эмиттером можно в этой статье.

Аналогичным образом можно подключить схему с общим коллектором и с общей базой. По сути, общий контакт — это такой контакт, который работает и на входе и на выходе одновременно с разными контактами.

Все тоже самое справедливо и для полевых транзисторов. Есть схемы с общим стоком, истоком и затвором.

Другие типы транзисторов

А еще бывают однопереходные, комплементарные и КМОП, МДП (MOSFET) и множество других транзисторов. Они разные по своим характеристикам, выполняют разные задачи и предназначены для конкретных целей. Но в целом, принцип работы у всех одинаков. Это управление электрическим током.

Характеристики

Так как полупроводниковые триоды (транзисторы) выполнены из полупроводника, то и на их работу влияет окружающая среда. Например, при изменении температуры окружающей среды, транзистор может вносить нелинейные искажения в выходной сигнал. С этим борются при помощи термпостабидизционных схем, которые позволяют стабилизировать работу транзистора на высоких температурах.

Также у транзисторов есть ВАХ (вольт-амперные характеристики), которые в отличие от вакуумной техники, быстро переходят в насыщение.

У всех транзисторов есть следующие параметры:

Режимы работы

В целом, можно выделить несколько режимов работы:

Функции транзисторов

Транзисторы выполняют следующие функции:

  1. Позволяют усиливать электрические сигналы. Транзисторы усиливают любые электрические сигналы, как высокие так и низкие частоты.
  2. Могут работать как ключ, включать и выключать поступление электрического тока. Благодаря этому простому включению и выключению работают все современные процессоры. Транзисторы – это основа всей современной цифровой техники.
  3. Генерируют электрические сигналы за счет положительной обратной связи. На их основе можно сделать генераторы звука и сигналов.
  4. Могут согласовывать сопротивления электрических цепях за счет различных схем включения и работают как ограничители тока. В блоках питания транзисторы могут ограничивать ток короткого замыкания, а также работать как предохранитель.

Чем транзисторы уступают лампам

Несмотря на неоспоримые преимущества транзисторов перед лампами, ламповые триоды по прежнему имеют ряд преимуществ., среди которых:

Нельзя прямо сказать, что транзисторы полностью искоренили лампы. У каждой детали есть свои преимущества и недостатки в разных областях. Конечно, в цифровой технике транзисторам нет ровни среди ламп. Однако на сверхвысоких частотах транзисторы по-прежнему уступают лампам.

Читайте также:  Бетононасосы на страже эффективности строительства

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *